2,640 research outputs found

    Quark Loop Contributions to Neutron, Deuteron, and Mercury EDMs from Supersymmetry without R parity

    Full text link
    We present a detailed analysis of the neutron, deuteron and mercury electric dipole moment from supersymmetry without R parity, focusing on the quark-scalar loop contributions. Being proportional to top Yukawa and top mass, such contributions are often large. Analytical expressions illustrating the explicit role of the R-parity violating parameters are given following perturbative diagonalization of mass-squared matrices for the scalars. Dominant contributions come from the combinations Biλij1B_i \lambda^{\prime}_{ij1} for which we obtain robust bounds. It turns out that neutron and deuteron EDMs receive much stronger contributions than mercury EDM and any null result at the future deuteron EDM experiment or Los Alamos neutron EDM experiment can lead to extra-ordinary constraints on RPV parameter space. Even if R-parity violating couplings are real, CKM phase does induce RPV contribution and for some cases such a contribution is as strong as contribution from phases in the R-parity violating couplings.Hence, we have bounds directly on Biλij1|B_i \lambda^{\prime}_{ij1}| even if the RPV parameters are all real. Interestingly, even if slepton mass and/or μ0\mu_0 is as high as 1 TeV, it still leads to neutron EDM that is an order of magnitude larger than the sensitivity at Los Alamos experiment. Since the results are not much sensitive to tanβ\tan \beta, our constraints will survive even if other observables tighten the constraints on tanβ\tan \beta.Comment: 16 pages, 10 figures, accepted for publication in Physical Review

    ASTROD, ASTROD I and their gravitational-wave sensitivities

    Full text link
    ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) is a mission concept with three spacecraft -- one near L1/L2 point, one with an inner solar orbit and one with an outer solar orbit, ranging coherently with one another using lasers to test relativistic gravity, to measure the solar system and to detect gravitational waves. ASTROD I with one spacecraft ranging optically with ground stations is the first step toward the ASTROD mission. In this paper, we present the ASTROD I payload and accelerometer requirements, discuss the gravitational-wave sensitivities for ASTROD and ASTROD I, and compare them with LISA and radio-wave PDoppler-tracking of spacecraft.Comment: presented to the 5th Edoardo Amaldi Conference (July 6-11, 2003) and submitted to Classical and Quantum Gravit

    Decoherent Scattering of Light Particles in a D-Brane Background

    Get PDF
    We discuss the scattering of two light particles in a D-brane background. It is known that, if one light particle strikes the D brane at small impact parameter, quantum recoil effects induce entanglement entropy in both the excited D brane and the scattered particle. In this paper we compute the asymptotic `out' state of a second light particle scattering off the D brane at large impact parameter, showing that it also becomes mixed as a consequence of quantum D-brane recoil effects. We interpret this as a non-factorizing contribution to the superscattering operator S-dollar for the two light particles in a Liouville D-brane background, that appears when quantum D-brane excitations are taken into account.Comment: 18 pages LATEX, one figure (incorporated

    Timeless path integral for relativistic quantum mechanics

    Full text link
    Starting from the canonical formalism of relativistic (timeless) quantum mechanics, the formulation of timeless path integral is rigorously derived. The transition amplitude is reformulated as the sum, or functional integral, over all possible paths in the constraint surface specified by the (relativistic) Hamiltonian constraint, and each path contributes with a phase identical to the classical action divided by \hbar. The timeless path integral manifests the timeless feature as it is completely independent of the parametrization for paths. For the special case that the Hamiltonian constraint is a quadratic polynomial in momenta, the transition amplitude admits the timeless Feynman's path integral over the (relativistic) configuration space. Meanwhile, the difference between relativistic quantum mechanics and conventional nonrelativistic (with time) quantum mechanics is elaborated on in light of timeless path integral.Comment: 41 pages; more references and comments added; version to appear in CQ

    Breast cancer–secreted factors perturb murine bone growth in regions prone to metastasis

    Get PDF
    Breast cancer frequently metastasizes to bone, causing osteolytic lesions. However, how factors secreted by primary tumors affect the bone microenvironment before the osteolytic phase of metastatic tumor growth remains unclear. Understanding these changes is critical as they may regulate metastatic dissemination and progression. To mimic premetastatic bone adaptation, immunocompromised mice were injected with MDA-MB-231–conditioned medium [tumor-conditioned media (TCM)]. Subsequently, the bones of these mice were subjected to multiscale, correlative analysis including RNA sequencing, histology, micro–computed tomography, x-ray scattering analysis, and Raman imaging. In contrast to overt metastasis causing osteolysis, TCM treatment induced new bone formation that was characterized by increased mineral apposition rate relative to control bones, altered bone quality with less matrix and more carbonate substitution, and the deposition of disoriented mineral near the growth plate. Our study suggests that breast cancer–secreted factors may promote perturbed bone growth before metastasis, which could affect initial seeding of tumor cells
    corecore